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Survey of Rate Distortion and Information
Bottleneck from the Perspective of Unsupervised
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Abstract—This paper will introduce the ideas of unsupervised
machine learning as motivation for presenting the underlying
information theoretic theory from the perspective of channel
coding, then transition into a discussion of various extensions
of information bottleneck ideas and algorithms to applications.
In particular, several examples of the optimization models
applied to toy problems are used to demonstrate usage and
equivalences between the various models. Though these ex-
amples only scratch the surface of the full range of ideas
and implementations explored in this paper, they provide a
motivation and background for such extensions. The paper
concludes with an overview of the different applications of
information theoretic concepts to learning techniques and data
sets, relating various modern techniques to the informational
bottleneck, and proposing several ideas for implementation.

I. MOTIVATION

UNSUPERVISED learning has found increasing usage
due to the vast increase in unstructured information.

Unsupervised learning involves the inference of some func-
tion which describes the structure of the data being ana-
lyzed. One general optimization for unsupervised learning
is:

min
f

d(A, f (A))

subject to

C ( f (A)) ≤C

That is, minimize some distance metric d(·, ·) of An,m , the
data matrix, and some function of A, subject to a constraint
on the complexity C on the functional expression f (A)
being less than a value C . In this optimization problem,
optimizing f (A) is the unsupervised learning problem. In
practice, three techniques have found broad usage: clus-
tering and latent variable modeling (dimensionality reduc-
tion). For the example of low rank matrix approximation1,
the corresponding optimization is:

min
Ã

‖A− Ã‖2
F

subject to

ui ∈Rm , vi ∈Rn

Ã =
n∑

i=1
σi ui v>

i

1often implemented as PCA

That is, find a matrix that minimizes the Frobenius norm of
the difference matrix between the data A and some other
matrix Ã being optimized, subject to the constraint that that
rank of this other matrix must be less than some k. Notice
that for A being dense, this will require fewer variables, for
k < min(m,n), since this is described by: km+kn+k terms,
while in general the data matrix is described by mn terms.
This problem is an example of dimensionalitiy reduction,
since the dimension of the data has been reduced.

Clustering chooses some number of cluster centers, such
that these cluster centers are representative of the data.
That is, the generalized optimization formulation for clus-
tering:

min
ci∈C

n∑
i=1

d1(ai ,min
ci∈C

d2(ai ,ci ))

This is minimizing the distance metric d1 between ai , a
data point in the data matrix, and the nearest cluster,
where the nearest cluster is chosen by d2. In general,
d1 := d2. Clustering reduces the amount of data needed
to describe a data matrix. This is done by replacing the
data points with some representation of their closest cluster.
Furthermore, clustering can provide information about the
underlying structure of the data. Notice that this problem
under fixed distance metric is in fact NP-complete for
continuous ci ∈Rm .

Clustering and dimensionality reduction parallels the
information theoretic discussion of quantization in rate
distortion and the accompanying informational bottleneck.
Suppose that the data matrix A is produced from some
source distribution P A . Then in the limit of samples, P A

is the solution to the unsupervised learning problem, pro-
vided that it can be described with some finite complexity.
This parallels the problem of sampling, where in order
to describe a continuous, infinite signal, some number
of samples are introduced, which can sometimes describe
the signal2. In the rate distortion problem, the user at-
tempts to describe some random process, which is possibly
continuous, with a finite representation, subject to some
distortion measure. Ultimately, this can be used to produce
a clustering, using an estimated probability distribution
from the data matrix, and mapping this possibly continuous
distribution to some quantization distribution (of clusters).
Then all points that are mapped to the same quantized
value will be clustered.

2Particularly, under bandwidth constraints



Figure II.1. Ideal Rate distortion values for Bernoulli .5 random variable

Figure II.2. Ideal prior probability values for Bernoulli .5 random variable

II. BACKGROUND

RATE distortion theory is motivated from the descrip-
tion of a continuous random variable using some

finite number of bits. It is clear that even a single real
number requires an infinite number of bits to represent,
and thus it will always be impossible to fully represent
such a (random) variable. Thus, the optimization attempts
to minimize the expected distortion for a given fixed rate. In
a manner similar to channel coding, where a better rate is
achievable by spreading out the bits over time, it turns out
that “spreading out” the information over several random
variables by their joint distribution leads to less distorted
codes storing the same information, that is, quantizing a
set of n iid random variables represented using nR bits,
where R is the rate[1]. Some nomenclature involved with
rate distortion theory:

• X , Xi : a random variable drawn from some distribution
X

• X n : a sequence of random variables of length n
• X̃ : the quantized representation of X , drawn from X̃ .
• d(X , X̃ ) : X × X̃ → R+: The distortion function, which

applies to the instances of X , X̃ , x, x̃, and produces
a distance. Some common distance metrices includes

the hamming distortion:

{
0 x = x̃

1 otherwise
, and norm-

distance: ‖x−x̂‖2
2. This extends to the sum of distances

for a sequence
• fn : X n → {1,2, . . . ,2nR }, the mapping of the input

space into some quantized number of bits, gn :
{1,2, . . . ,2nR } → X̃ \, or the reconstruction alphabet.
These function may be stochastic

• d̄(X , X̃ ): the average distortion measure, which is eval-
uated as:

∑
xn

p(xn)d(xn , gn( fn(xn))),
∑
x,x̃

p(x)p(x̃|x)d(x, x̃)

• The rate distortion function R(D) =the infimum of rate
R such that the distortion D is achieved.

The rate distortion function solves the optimization

Figure II.3. Ideal Rate distortion values for Bernoulli .5 random variable

Figure II.4. Ideal prior probability values for Bernoulli .3 random variable

problem:
min
p(x̃|x)

I (X ; X̃ )

subject to∑
x,x̃

p(x)p(x̃|x)d(x, x̃) = d̄(X , X̃ ) ≤ D

Note that the intuition of this is actually somewhat unusual,
as this minimization takes the infimum over the probability
distributions which destroy information about X . This is a
result of the mathematics (see [1]), and this minimization
results in the reduction of overall information needed to
represent X .

This function can be directly applied to find the optimal
probability distribution of some simple distributions. As an
example, the distribution: X ∼ Bernoulli(p), and X̃ ∈ {0,1}.
Then:

I (X ; X̃ ) = H(X )−H(X |X̃ ) ≥ H(p)−H(Pr (X 6= X̃ )) ≥ H(p)−H(D)

Notice the last term derives from the fact
that the error term being sub-components of∑

x̃=0,1 P (x̃)
∑

x=0,1 P (x|x̃) log(P (x|x̃)), each of which is
positive and thus increases the value. Notice that with a
hamming distortion:

∑
x,x̃ p(x)p(x̃|x)d(x, x̃) = P (X 6= X̃ ) ≤ D .

Now, by demonstrating a code such that: R(D) = H(p)−
H(D), this demonstrates the optimality of this rate distor-
tion function. The suggested code requires the property:
P (X̃ = 1) = p̃, p̃(1−D)+ (1− p̃)D = p, that is, the crossover
probability reproduces: P (X = 1) = p. This resolves to:
p̃ = p−D

1−2D . Note that this solution only holds for D ≤ p.
Otherwise, the solution is trivial, where p̃ = 0, which has
distortion: p ≤ D .

The rate distortion function, as well as optimal p̃ for
bernoulli 0.5 random variable is illustrated in figure II.1
and figure II.2 respectively. Notice here that destroying
the information equates minimizing the rate distortion, so
the actually application of compression is hard to capture.
In figure II.3, II.4, the rate distortion and optimal p̃ is
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shown for X ∼ Bernoulli .3. Notice that in this case, the
rate distortion code produces p̃ with varying probabilities.
As the distortion increases, p̃ probability decreases mono-
tonically. This makes intuitive sense: as more damage is
allowed, in the form of distortion or probability of error,
the sparsity of the code increases. Notice also that though
the alphabets of the codes are the same in this case, the
sparsity of the code corresponds to greater compression.
A code which less often has ones3 can be represented
with fewer bits over a bit sequence. In practice, some
methods for sparsity compression include Huffman codes
and reverse syndrome coding. These results demonstrate
that destroying the information about the original signal
does not simply confound the bits, as is the case with
p = .5, but actually produces a more compressible signal
in a monotonic way.

For more complex codes, it is more difficult to simply
derive a solution to the optimization problem, though it is
shown that for multivariate IID Gaussians, that is

X ∼N (0,

σ
2
1 . . . 0

...
. . .

...
0 . . . σ2

m


the distortion level for each the Gaussians follows a reversed
water filling based on the magnitudes of their σ2

i [1]. For
such cases, it is preferable to perform some algorithm
on the probability distributions which begets the optimal
quantization. While choosing the optimal alphabet to quan-
tize over is a difficult problem, over a fixed alphabet, an
intuitive algorithm exists for the solving of:

F [p(x̃|x)] = I (X ; X̃ )+βd̄(x, x̃)

Or as an optimization problem:

min
p(x̃|x)

I (X ; X̃ )+βd̄(X , X̃ )

This formula is the relaxed lagrangian form of the original
problem, where β is the chosen lagrange multiplier. Notice
that solving this is not the same as solving the dual prob-
lem, which uses a parameter D for the distortion. Instead,
the term βd̄(X , X̃ ) regularizes the information confounding,
since in order to minimize the value I (X ; X̃ ), which com-
presses the signal, βd̄(X , X̃ ) must also be minimized, thus
producing a limit on the damage sustainable to the signal.
Notice that this is an unconstrained minimization in p(x̃|x).
Thus, taking the derivative[2]:

0 = δF

δp(x̃|x)
=

p(x)

[
log(p(x̃|x)/p(x̃))+1− 1

p(x̃)

∑
x′

p(x ′)p(x̃|x ′)+βd(x, x̃)+ λ(x)

p(x)

]
Solving this for p(x̃|x ′), noticing that:

∑
x′ p(x ′)p(x̃|x ′) = p(x̃)

p(x̃|x)

p(x̃)
= eβd(x,x̃)+λ(x)/p(x)

3Thus more sparse

Figure II.5. Concise description of the Blahut Arimoto algorithm, taken
from [3]

Figure II.6. Rate distortion values for Bernoulli 0.5 random variable,
computed with the Blahut Arimoto algorithm

Noting that eλ(x)/p(x) is simply a normalization term gives:
p(x̃|x) = pt (x̃)

Zt (x,β) exp(−βd(x, x̃)). The Z here are normaliza-
tion terms.

From this, the Blahut Arimoto algorithm arises. Figure
II.5 contains a concise description of the algorithm. The
formulation of this algorithm is based on the dual mini-
mization of the convex sets, p(x̃), p(x̃|x), where p(x̃) arises
from summing out the joint distribution, and notice that
for the computation of the joint probability, the prior is
needed. The proof of optimality of this algorithm is quite
involved and found in [1], but it is important to note that
because this algorithm is a dual minimization of convex
sets, it will converge to a global optimal. This may not
be the optimal rate distortion, recall, because the alphabet
of x̃ may be limiting. Returning to the results from
analysis of the Bernoulli p = 0.5 variable, Figures II.6, II.7
perform the same analysis, over varying β. Notice that β
is anticorrelated with D, that is, smaller β corresponds to
less penalty, which corresponds to higher D. In addition,
the correlation between β and D with R is not the same,
as changing β produces changing R with a different shape,
which is expected because the Lagrangian relaxation is not
likely to acct exactly as the original problem. Nonetheless,
the results of β produce distributions which match those
derived analytically. This fact agrees with the convexity of
the optimized sets in practice. Similarly, figures II.8, II.9
provide analysis of the Bernoulli .3 distribution. Notice
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Figure II.7. Ideal prior probability values for Bernoulli 0.5 random variable,
computed with the Blahut Arimoto algorithm

Figure II.8. Rate distortion values for Bernoulli 0.3 random variable,
computed with the Blahut Arimoto algorithm

that for a given value of R, the prior probability of the
distribution matches that of the ideal value, for the prior
probabilities derived using the Blahut-Arimoto algorithm
implementation.

III. DEFINITION

THE information bottleneck attempts to alleviate the
issue of choosing a distortion measure. Although in the

Bernoulli .5 case studied here, the hamming distance can
be chosen trivially with intuitive results, most probability
distributions do not have this luxury. From the perspective
of classification, the preferred choice of distortion is one
which minimizes the damage to one‘s ability to classify the
data points correctly4. In order to formalize this problem,
denote X as some source distribution, Y as some class
distribution, and X̃ as the quantization.

Note first that it is impossible to classify better than X .
That is, if some perfect classification function f (X ) → Y has
a probability of error of ε, then it is impossible to do better
than this, if all the information in X about Y is utilized.
The impossibility of information gain about Y formalizes as:
I (X̃ ;Y ) ≤ I (X ;Y ). Combining this with I (X̃ ; X ) quantifying
a degree of compression gives:

min
X̃

I (X̃ ; X )

Subject to

I (X̃ ;Y ) ≥I

This describes minimizing the information between X̃ and
X . That is, maximizing the compression, while maintaining
at least I bits of information about Y. Like with rate

4Briefly, given inputs X , and a reference variable Y , the classification
problem attempts to assign for each xi , a data point in X , some
probability distribution on P (yi |xi ), where some training set X is given,
which contains points xi and their accompanying labels yi

Figure II.9. Ideal prior probability values for Bernoulli 0.3 random variable,
computed with the Blahut Arimoto algorithm

Figure III.1. Concise description of the iterative information bottleneck
method, as described in [3]

distortion codes, this relationship can also be expressed in
a Lagrangian form:

min
X̃

I (X̃ ; X )−βI (X̃ ;Y )

This form also allows for a series of self consistent equa-
tions, which are used to determine algorithms for solving
the information bottleneck problem. Similarly, the math-
ematics involves in deriving the self-consistent equations
is not particularly involved and can be reported here, first
expressed in the paper [2].

Taking the derivative of the lagrangian gives, on the def-
inition of Information gain:

∑
x,x̃

p(x̃|x)p(x) log(p(x̃|x)/p(x̃)):

∂L

∂p(x̃|x)
= p(x)[1+ log(p(x̃|x))]

− ∂p(x)

∂p(x̃|x)
[1+ log(p(x̃))]

−β∑
y

∂p(x̃|y)

∂p(x̃|x)
p(y)[1+ log(p(x̃|y))]

−β ∂p(x̃)

∂p(x̃|x)
[1+ log(p(x̃))]−λ(x)

Which can be reduced to, by using the definition of
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Figure III.2. A scatter plot of the prior probabilities given by the iterative
information bottleneck

Figure III.3. Prior probabilities against increasing beta values, as computed
by the information bottleneck algorithm, for prior probability 0.5

p(x̃), p(x̃|y) =∑
x p(x̃|x)p(x|y):

∂L

∂p(x̃|x)
= p(x)[log

p(x̃|x)

p(x̃)

+β∑
y

p(y |x) log(
p(y |x)

p(y |x̃)
)

−λ(x)

p(x)
−β∑

y
p(y |x) log

(
p(y |x)

p(y)

)
]

Where the final term is a normalization factor. This then
reduces to:

p(x̃|x) = p(x̃)

Z (x,β)
exp

(−βDK L[p(y |x)|p(y |x̃)]
)

Here, DK L is the kl divergence which arises as a replacement
of the definition and not because of any particular as-
sumptions. This equation suggests the equations suggested
in figure III.1 are a concise statement of this algorithm.
However, unlike rate distortion codes, the convergence
of this algorithm on a global minima is not guaranteed,
although the algorithm itself is guaranteed to converge
somewhere. The intuition for the failures of the algorithm
to converge lies in the three-way mutual convergence of
p(x̃|x), p(x̃), p(ỹ |x), which are mutually dependent. The
proof of this lies in [2]. In order to better understand
these results, the algorithm in figure III.1 was implemented.
Observe the results in figure III.2, which display results of
the prior probability p̃ of the new distribution x̃, against
increasing β. This simulation is set up with an input of
a Bernoulli random variable with probability 0.5, with a
dependency matrix: y = 0 y = 1

x = 0 0.3 0.9
x = 1 0.7 0.1


where the x values are on the rows. This dependency matrix
has the property that x provides significant information

Figure III.4. Prior probabilities against increasing beta values, as computed
by the information bottleneck algorithm, for prior probability 0.3

about y, and thus by destroying the information about x,
information about y is reduced. If the algorithm is run
without significant information between x and y , the results
will simply be a complete compression of x, where p̃ = 0.
Notice that because the way the information is preserved
is arbitrary, it is also possible for: p̃ = 1. In either case, the
distribution has reduced into a single point.

Returning to figure III.2, note that the results of single
iterations run with the IB algorithm often converges to the
local optimum of compression the value to a single point. In
fact, one weakness of this algorithm is that certain values of
β will be more likely to converge to local optima, which in
this example is at p̃ = 1. Nonetheless, for iterations with β, it
is clear that the prior probability is converging to preserve
more information with increasing beta. In this case, this
correlates with increased dependence on x. However, to
better understand the trade off between compression and
preservation, it is necessary to observe more samples. In
figure III.3, the IB algorithm was run 30 times for each
value of β, and the minimum of the posterior probabilities
are plotted. Note the smooth transition from having no
information preserved at β = 2 to having most of the
information preserved at β= 6. Additional values of β were
computed to understand the smoothness of the graph. Note
that this curve strongly resembles the asymptotic of 1

β ,
and additionally, does not follow exactly the same curve
as Rate distortion codes. Nonetheless, there is a monotonic
tradeoff between the preservation of information about Y ,
and the compression of X , for increasing β. Figure III.4
provides more insight, using another tradeoff curve, if the
prior probability of X , p, is 0.3 instead of 0.5. Note that
the tradeoff of information was significantly lower, which is
most likely the result of there being less overall information
between Y and X, since X = 1 preserves more information
than X = 0. Finally, note these simulations demonstrate
relationships between X ,Y for what is essentially a binary
asymmetric channel5.

While the algorithm suggested in figure III.1 is the
simplest conclusion of the self-consistent equations, the
structure of the solutions suggests that:

∂I (X̃ ,Y )

∂I (X , X̃ )
=β−1

5Note that the information stored about Y was not
shown here, but can be observed by running the code at
https://github.com/CalCharles/InfoBottle121.git
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Figure III.5. A concise description of the annealing algorithm for com-
puting the relaxed information bottleneck problem, as described in [3]

This states that the amount of information preserved about
Y , compared to the amount of information removed about
X, is related by the regularization term. Notice that in the
figure, this property is not described, although by running
the simulations it can be verified. The figures rely on this to
demonstrate how the destruction of information for a given
β also describes the information preserved about Y , since
the rate of change is a constant. Perhaps a more interesting
result of this is that it suggests a simulated annealing
algorithm, shown in Figure III.5, which alters the value of β
based on detecting values in X̃ for which the value “splits,”
or takes on multiple values of Y with similar probability,
then moving to increasing β as increasing “splits” occur.
This then gives a structure for which varying values of β
result in varying amount of split. The demonstration of how
the algorithm achieves this is located in [3]

IV. APPLICATION

MANY applications of the information bottleneck theo-
rem arose, especially due to the existence of relatively

implementable algorithms such as those shown in figures
III.1, III.5. Furthermore, for multivariate Gaussian variables
(As with the water filling result from rate distortion codes)
the solution to the information bottleneck problem is closed
form. Rather than a discrete clustering, or quantization,
solution, this solution results in a continuous representa-
tion [4]. The intuition for this continuous solution results
from the definition of multivariate Gaussian variables using
means means and co-variances. The result derives simply
from the continuous derivative of Gaussian entropy, when

applied to Gaussian random variables X , X̃ ,Y . The deriva-
tion is in[4], with the result as:

X̃ =



[
0> . . . 0>

]
0 ≤β≤β1[

α1v>1 0> . . . 0>
]

β1 ≤β≤β2[
α1v>1 α2v>2 0 . . . 0>

]
β2 ≤β≤β3

...

Where v>1 , . . . ,v>n are the left eigenvectors of:

Σx|yΣ−1
x

and

βi = 1

1−λi
,αi =

√
β(1−λi )−1

λi ri
,ri = v>i Σx vi

This result demonstrates as expected, that β provides a
measure of the amount of information stored about the
data in X̃ , where increasing β suggests an increasing
amount of information. Then, for this problem, the solution
appears to take on properties similar to one for principle
component analysis, where the number of principle com-
ponents is increased with increasing necessity for data6.
Furthermore. this solution also suggests a way to relate the
labels of the training set with the data to perform an im-
proved version of the dimensionality reduction, or choose
an optimal number of decomposition components. Finally,
this method provides a similarity between the analysis of
continuous representations of X ,Y , X̃ with discrete ones:
X ,Y , X̃ .

Another interesting application of the information bottle-
neck approach involves the application of the so called dou-
ble clustering and agglomerative information bottleneck. In
practice, one of the significant difficulties of using the infor-
mation bottleneck involves the problem of determining the
probability distribution of P (X ,Y ), or the related problem:
P (X ). For example, the problem of choosing a feature space
for “small” images, such as those in the MINST dataset,
involves determining the distribution of values for 784 ·n
bits, where n is the number of bits used to represent a real
number. Even if only one bit is used to represent each pixel,
this would still involve an infeasible amount of memory,
when considering all of the combinations: 7842n

, simply to
determine P (X ), the prior distribution. It is viable to apply
Gaussian assumptions to the distribution, but this is often
too strong. In digit data, such an assumption states that
all symbols follow a derived l 2 distance metric from each
other, which is not often true. For other learning problems,
Gaussian assumptions often fail to perform well. Similarly,
using a naive Bayes model can reduce the complexity to
manageable levels, but this makes strong independence
assumptions which are generally not true. For the example
of images, this would make the pixels independent, but this
is clearly false, as images contain a great deal of symmetry,
which are often the structures searched for in computer

6Notice that this observation is made based on the understanding of
principle components as singular values, which are directly related to the
eigenvalues of the empirical covariance matrix, or the inverse covariance
matrix incorporated with inverse eigenvalues
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Figure IV.1. A concise description of the agglomerative algorithm for
computing the “hard” information bottleneck problem, taken from [3]

vision. Thus, this problem is addressed in the agglomerative
algorithm. This algorithm is concisely described in Figure
IV.1. In essence, it describes putting a cluster point at each
of the given data inputs, then subsequently combining the
data points based on the lowest information loss. Notice
that this still requires an approximation of the probability
distribution, but, as outlined in [3], the criterion on merging
need only be performed at a local level, by the following
metric:

JSΠ[p(y |x̃i ), p(y |x̃ j )]−β−1 JSΠ[p(x|x̃i ), p(x|x̃ j )]

However, note that while this is substantially smaller than
containing a full matrix of all |X̃ | and |X | comparisons, this
is still substantially too large for true continuous variables.
Nonetheless, [5] demonstrates this technique being used
with the clustering of documents based on their word
occurrences, performing an agglomerative technique on
the different kinds of words. Note this does require an
independence assumption on the words to be feasible.

The double clustering technique shown in [5] first clusters
on the words, a much larger and harder to cluster set
based on the agglomerative method, which results in a
quantization of the word space into a much smaller word
cluster space. Then, the document space is clustered based
on the word clusters contained by the documents. The
number of documents is much smaller, allowing for full
conditional distributions based on the word clusters. This
double clustering method works well compared with other
clustering techniques for the work of classifying docu-
ments, as demonstrated in [5], when compared with other
classifying techniques. This largely makes sense, since the
quantization defined by IB in general takes into account
better the information about the reference variable Y .
The idea of clustering the data points by some metric
to a quantization small enough to derive an empirical
conditional distribution is discussed in the subsequent
Discussion section.

This section concludes with the application of the in-
formation bottleneck to a Markovian clustering model, as

described in [6]. This understanding follows similarly to the
agglomerative clustering algorithm in [5]. Here, the data
points are are assigned to nodes on a Markov chain graph,
and the distances7 between the data points assigned based
on

exp(−λd(xi ,x j ))

This distance metric is a sort of exponential pairwise
transition probability. This matrix will have some initial
distribution based on the values of the data points, and to
find the distribution after a t step random walk, the matrix
will have the form:

P t x0

where P is the transition matrix defined above. Then, based
simply on the properties of the Markov chain, notice that
the information about some variable y will be stored in
the initial distribution of this Markov chain. As the Markov
chain is allowed to decay toward the stationary distribution,
more information about the initial distribution will be lost.
If the distance metric of:

d(xi ,x j ) = (xi −x j )2 + (yi − y j )2

is chosen, then the rate of information lost will be based on
the bottleneck formed by preserving information about y .
In [6], it is shown that structures appear as the stationary
distribution is approached, which resemble the true clusters
of the graph. This algorithm provides a link between clus-
tering and semi-stable structures in a Markov chain, and
does not need to quantify the underlying probability space
of the data points, which makes it easier to implement.

V. DISCUSSION

RETURNING from the implementation of particular
clustering schemes based directly on the information

bottleneck to the general problem of machine learning, this
section will discuss the application of information theo-
retic understandings applied to existing algorithms. Rate
distortion provides a general framework for understanding
quantities about the structure of the data. In clustering, this
often involves the amount of information preserved about
the overall data. The information bottleneck approach aug-
ments this to be the amount of information preserved about
the reference variables. In [7], artifacts in the rate distortion
suggest an ideal number of clusters. This is intuitive, since
if some number of clusters exists, it should be that if those
clusters are found, any excess of description would not lead
to significant change in distortion. This section explores
such applications as [7], of both the information bottleneck
and rate distortion codes.

One such extension of the information bottleneck is
explored in [8]. Unsupervised learning attempts to derive
structures in the data based on some criterion. However,
not all of the side structures are equally important, and dy-
namics of the system, or soft knowledge might demonstrate
that it is preferable for some structures to be ignored. One

7Recall for a Markov chain that distances involves the probability of
transitioning between nodes of the Markov chain
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such example of this might be missing data in click-through
prediction. Often, sub-fields of the ad “impression” data is
missing8. However, a classifying model might classify based
on this information even though it may not be preferable
to sustain the interpretability of the classifier.

The problem of side information relates also to rate
distortion, where if some mutual variable W which contains
information about X is provided at both ends, it is prefer-
able to avoid transmitting information about W resulting
in:

min
d̄(X ,X̃ )≤D

I (X ; X̃ )− I (X̃ ;W )

as described in [9]. The problem of side information in-
volves a simple extension of the Lagrangian of the infor-
mation bottleneck:

L = I (X ; X̃ )−β[I (X̃ ;Y +)−γI (X̃ ;Y −)]

Y − is the irrelevance variable in this case. Notice that this
augmentation attempts to remove information about the ir-
relevance variable, by giving it the same sign as I (X ; X̃ ), the
compressor. In [8], this problem is formulated into a new
set of self-consistent equations, producing a new iterative
algorithm which can be used for text classification, similar
to the problem described in [5]. The irrelevance information
in this paper involved structures of the data common to all
documents, and thus not useful for differentiation.

The information bottleneck theory also appears com-
monly in the analysis of networks and graphs. In the
case of structured graphs, such as the neural network, the
information bottleneck framework provides a theoretical
basis for understanding the transition of un-interpretable
structures in the data to highly compressed labels. Neural
nets have proven particularly useful at performing tasks
humans can do well: interpreting images and sound data.
In these problems, almost all of the information about the
relevance variable is in some way contained in the original
input signal X . A neural net consists of several alternating
layers of linear maps and non-linearity functions. At each
non-linearity, it is possible to determine the amount of
information about X remaining, given a distribution. In-
tuitively, each layer must be bounded in information, that
is, for layer Xi

I (X ; Xi ) ≤ I (X ; Xi−1, I (Y ; Xi ) ≤ I (Y ; Xi−1)

However, in the case of a highly accurate neural net, it ap-
pears that this function maintains the information between
I (Xi ;Y ), while reducing I (X̃ ; Xi ), at least at the output layer.
In fact, neural nets have been used as compressors, by
forcing the data through a small “bottleneck” of nodes
[10]. For the case of neural nets [11] provides a theoretical
framework for exploring the information stored in the layers
relative to the optimal information to rate ratio.

Finally, The information bottleneck method also brings
up the interesting idea when applied to a data processing
problem. Imagine the problem shown in figure V.1, where a
single operator performs some learning algorithm, but lacks

8Suppose that the user has used more private browser settings

the memory to contain of the data. Since the information
bottleneck provides a theoretical framework for estimating
the relevance of a compression of X toward the computa-
tion of Y , it may provide a framework for determining some
stochastic combination of the input data such that when
the operator receives the data, the training set provides
maximal information about the relevant structures in Y . In
fact, modern methods currently suggest that random pro-
jections of the data9, can be effective for the convergence of
convex optimization algorithms, which are commonly the
workhorse for machine learning10 [12].

Figure V.1. Each of the servers sends some of its data to the operator,
such that the operator then performs some machine learning algorithm.
notice the primary weakness here is that the operator does not have the
same kind of storage as the servers, and thus can only receive a small
subset of the total data.

VI. CONCLUSION

THE subject of the information bottleneck provides a
rich set of methods for studying learning problems in

general, even going beyond the problem of unsupervised
learning which motivated it. In recent years, less work has
been dedicated to the study of new algorithms directly as a
result of the information bottleneck, instead understanding
it as a bridge between the statistical problem of machine
learning and the information theoretic problem of rates.
The weaknesses of the information bottleneck, and rate
related problems in general in this domain, involves ei-
ther the assumption of probability priors on continuous
variables, or the difficulty of deriving a useful empirical
distribution. However, in conjunction with modern algo-
rithms, the information bottleneck provides a framework by
which to study and quantify the usefulness of a particular
algorithm or heuristic to new sets of data, as well as deriving
new algorithms and heuristics based on the theoretical
optimization of the information bottleneck.

More practically, the information bottleneck provides a
quantified understanding of the primary problem in deal-
ing with the vast quantity of data now present. Videos,
audio, images, sensor data and text, which comprise a
vast proportion of the data accessible to be understood by
machine learning, all contain compressed representations
when related to their use. For example, a security video
might contain hours of footage, but only a small amount is
useful for law enforcement. A long document contains large
portions of example text, but the meat of the information
is a single intuition. Ultimately, the information bottleneck
provides a concise framework for the engineering problem

9Take the matrix product of the data with a randomly generated matrix
10note that the support vector machine is a convex program
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of producing devices which can distinguish the signal from
this chatter.

REFERENCES

[1] T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley,
New York, 1991)

[2] Tishby, Naftali, Fernando C. Pereira, and William Bialek. “The infor-
mation bottleneck method.” arXiv preprint physics/0004057 (2000).

[3] Slonim, Noam. “The information bottleneck: Theory and applica-
tions.” Diss. Hebrew University of Jerusalem, 2002.

[4] Chechik, Gal, et al. "Information bottleneck for Gaussian variables."
Journal of Machine Learning Research. 2005.

[5] Slonim, Noam, and Naftali Tishby. "Document clustering using word
clusters via the information bottleneck method." Proceedings of the
23rd annual international ACM SIGIR conference on Research and
development in information retrieval. ACM, 2000.

[6] Tishby, Naftali, and Noam Slonim. "Data clustering by markovian
relaxation and the information bottleneck method." NIPS. 2000.

[7] Sugar, Catherine A., and Gareth M. James. "Finding the number of
clusters in a dataset." Journal of the American Statistical Association
(2011).

[8] Chechik, Gal, and Naftali Tishby. "Extracting relevant structures
with side information." Advances in Neural Information Processing
Systems. 2002.

[9] Wyner, Aaron D., and Jacob Ziv. "The rate-distortion function for
source coding with side information at the decoder." Information
Theory, IEEE Transactions on 22.1 (1976): 1-10.

[10] Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing the di-
mensionality of data with neural networks." Science 313.5786 (2006):
504-507.

[11] Tishby, Naftali, and Noga Zaslavsky. "Deep learning and the infor-
mation bottleneck principle." Information Theory Workshop (ITW),
2015 IEEE. IEEE, 2015.

[12] Pilanci, Mert, and Martin J. Wainwright. "Randomized sketches of
convex programs with sharp guarantees." Information Theory, IEEE
Transactions on 61.9 (2015): 5096-5115.

9


